A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality
نویسندگان
چکیده
This paper proposes a new nonparametric test for conditional independence, which is based on the comparison of Bernstein copula densities using the Hellinger distance. The test is easy to implement because it does not involve a weighting function in the test statistic, and it can be applied in general settings since there is no restriction on the dimension of the data. In fact, to apply the test, only a bandwidth is needed for the nonparametric copula. We prove that the test statistic is asymptotically pivotal under the null hypothesis, establish local power properties, and motivate the validity of the bootstrap technique that we use in finite sample settings. A simulation study illustrates the good size and power properties of the test. We illustrate the empirical relevance of our test by focusing on Granger causality using financial time series data to test for nonlinear leverage versus volatility feedback effects and to test for causality between stock returns and trading volume. In a third application, we investigate Granger causality between macroeconomic variables.
منابع مشابه
Nonparametric Tests for Conditional Independence Using Conditional Distributions∗
The concept of causality is naturally defined in terms of conditional distribution, however almost all the empirical works focus on causality in mean. This paper aim to propose a nonparametric statistic to test the conditional independence and Granger non-causality between two variables conditionally on another one. The test statistic is based on the comparison of conditional distribution funct...
متن کاملA new statistic and practical guidelines for nonparametric Granger causality testing
In this paper we introduce a new nonparametric test for Granger non-causality which avoids the over-rejection observed in the frequently used test proposed by Hiemstra and Jones [1994. Testing for linear and nonlinear Granger causality in the stock price-volume relation. Journal of Finance 49, 1639–1664]. After illustrating the problem by showing that rejection probabilities under the null hypo...
متن کاملConditional Independence Specication Testing for Dependent Processes with Local Polynomial Quantile Regression
We provide straightforward new nonparametric methods for testing conditional independence using local polynomial quantile regression, allowing weakly dependent data. Inspired by Hausmans (1978) speci cation testing ideas, our methods essentially compare two collections of estimators that converge to the same limits under correct speci cation (conditional independence) and that diverge under th...
متن کاملA Nonparametric Hellinger Metric Test for Conditional Independence∗
We propose a nonparametric test of conditional independence based on the weighted Hellinger distance between the two conditional densities, f(y|x, z) and f(y|x), which is identically zero under the null. We use the functional delta method to expand the test statistic around the population value and establish asymptotic normality under β-mixing conditions. We show that the test is consistent and...
متن کاملTransfer Entropy for Nonparametric Granger Causality Detection: An Evaluation of Different Resampling Methods
The information-theoretical concept transfer entropy is an ideal measure for detecting conditional independence, or Granger causality in a time series setting. The recent literature indeed witnesses an increased interest in applications of entropy-based tests in this direction. However, those tests are typically based on nonparametric entropy estimates for which the development of formal asympt...
متن کامل